Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem

نویسندگان

  • Konstantinos Kaparis
  • Adam N. Letchford
چکیده

The 0-1 Multidimensional Knapsack Problem (0-1 MKP) is a wellknown (and strongly NP-hard) combinatorial optimization problem with many applications. Up to now, the majority of upper bounding techniques for the 0-1 MKP have been based on Lagrangian or surrogate relaxation. We show that good upper bounds can be obtained by a cutting plane method based on lifted cover inequalities (LCIs). As well as using traditional LCIs, we use some new ‘global’ LCIs, which take the whole constraint matrix into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Polyhedral Study of the Cardinality Constrained Knapsack Problem

A cardinality constrained knapsack problem is a continuous knapsack problem in which no more than a specified number of nonnegative variables are allowed to be positive. This structure occurs, for example, in areas as finance, location, and scheduling. Traditionally, cardinality constraints are modeled by introducing auxiliary 0-1 variables and additional constraints that relate the continuous ...

متن کامل

Simultaneously lifting sets of binary variables into cover inequalities for knapsack polytopes

Cover inequalities are commonly used cutting planes for the 0–1 knapsack problem. This paper describes a linear-time algorithm (assuming the knapsack is sorted) to simultaneously lift a set of variables into a cover inequality. Conditions for this process to result in valid and facet-defining inequalities are presented. In many instances, the resulting simultaneously lifted cover inequality can...

متن کامل

Lifted Cover Inequalities for 0-1 Integer Programs: Computation

We investigate the algorithmic and implementation issues related to the eeective and eecient use of lifted cover inequalities and lifted GUB cover inequalities in a branch-and-cut algorithm for 0-1 integer programming. We have tried various strategies on several test problems and we identify the best ones for use in practice. Branch-and-cut, with lifted cover inequalities as cuts, has been used...

متن کامل

Facets of the Complementarity Knapsack Polytope

We present a polyhedral study of the complementarity knapsack problem. Traditionally, complementarity constraints are modeled by introducing auxiliary binary variables and additional constraints, and the model is tightened by introducing strong inequalities valid for the resulting MIP. We use an alternative approach, in which we keep in the model only the continuous variables, and we tighten th...

متن کامل

Second-order cover inequalities

We introduce a new class of second-order cover inequalities whose members are generally stronger than the classical knapsack cover inequalities that are commonly used to enhance the performance of branch-and-cut methods for 0–1 integer programming problems. These inequalities result by focusing attention on a single knapsack constraint in addition to an inequality that bounds the sum of all var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2008